

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

DOT/FAA-RD-82-18

70

0

UNIT PRODUCTION COST OF THE RADAR BEACON TRANSPONDER (RBX)

FINAL REPORT

A. Schust W. Lovelace K. Peter

October 1982

PREPARED FOR

U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
Office of Systems Engineering Management
and Systems Research and Development Service
Washington, D.C. 20591
under Contract DOT-FA76WA-3788

This document has been approved for public release and sale; its took is unlimited.

114

í.

-

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

Technical Report Documentation Page

1. Report No.	2. Government Acce	sion No. 3.	Recipient's Catalog	No.
DOT/FAA-RD-82-18	10000	C 3 3		3
4. Title and Subtitle	AD-A121		Report Date	
3001110		3. 1	October 198	,
Unit Production Cost of the	he Radar Beaco	on 6.	Performing Organizat	
Transponder (RBX)			or committee or gant zar	ion Code
			Performing Organizati	on Report No.
7. Author's) A. Schust, W. Lovelace, K	Dotor		1326-01-1-28	
				i
9. Performing Organization Name and Addres		10.	Work Unit No. (TRA	IS)
ARINC Research Corporation 2551 Riva Road	n	117	Contract or Grant No	
Annapolis, Maryland 2140	1	1	DOT-FA76WA-3	
Annaports, marytand 2140.	L	13.	Type of Report and I	
12. Sponsoring Agency Name and Address			Final Report	
U.S. Department of Transpo	ortation	ĺ	3 March 1981	
Federal Aviation Administr	ration		30 October 1	1981
Office of Systems Engineer			Sponsoring Agency C	ode
Research and Development S 15. Supplementary Notes	Service, Washi	ngton, D.C. 20591	FAA-ARD 242	/ AEM-300
16. Abstract	_			
This report presents the m	results of a u	mit production cos	st analysis o	of the
Radar Beacon Transponder		<u> </u>		
				{
]
				Ì
				1
17 6 4 .				
17. Key Words		18. Distribution Statement		,
RBX				
Unit production cost			•	Ì
10 County Charles () Advisory	190 600 00	it (at abica and	21. No. of Pages	22 0
19. Security Classif. (of this report)	20. Security Class	ir. (or mis page)	1	22. Price
Unclassified	Unclassi	fied	82	

Reproduction of completed page authorized

•	į	.5	1 c I	Ē		% 7	ı"ı			5 1	2			# #	K T	ľ	ኔ ^ሜ	2			٠	1		8.0	
c Messeres		n de	e se v	į		square inches	sories augmbs	PC-PE	•	Quinces	short tuns			fluid ounces	pints cuerts	gelions	cubic feat			-	Fabrankoit temperatura		001	80°	
sions from Motri	Multiply by LENGTH	90.04	3	9.0	AREA	0.16		5.5	MASS (weight)	0.036	3 5		VOLUME	0.03	2.1	97.0	% -	?	TEMPERATURE (eyeet)	1	9.75 (them add 32)		90.	00 kg	
Approximate Conversions from Metric Messeres	When You Know	milimeters	Centimeters meters meters	hilometers	ł	square centimeters	squere hilometers	hecteres (10,000 m²)	=	grams	kilograms tonnes (1000 kg)		Ĭ	miliiliters	liters	liters	cubic meters		1811		Celsius		of 32	0 02- 00-	
		Ę	5 e e	5		~ 5 ~(~ §	2		•	S			Ē		· -'] -	E			'n		•		
53 53 11 11 11 11 11 11 11 11 11 11 11 11 11		oz		, 21 	91			>	12 12 13 14 15 15 15 15 15 15 15	81 1111111		01	6	 		2 111111	 	•	.			2			
1.	1999	دادا	'}''' 	1717 '	3 4 3];''	"	77°	P.)·]·]·	Tr.	''' ' •	! ']'	177	' <u> </u> '	ָיןי!	ָרְינְינְינְינְינְינְינְינְינְינְינְינְינְ]'] ']	֓֞֓֓֓֓֓֓֓֓֟֟֓֓֟֓֟֟֓֟֓֟֟֓֟֟֟ ֓֓֓֞֞֞֓֓֓֞֞֞֓֓֓֞֞֞֓֓֓֓֓֞֞֓֓֓֞֞֓֓)' ' ,)'''''	'J' 	.1.}.1.	Inches	
	į		5 !					· "§	2	•	· 2 .			Ē	Ēī	! _			~e ^	È		'n		58. 786.	
Mosseres	1		Continueters	meters hilometers		Souge Continueters	Equare meters	square hilgmeters	Nectares	e E	hilograms tomes			m. II. it ters	milliters.	liters	liters	11678	cubic meters	cubic meters		Celsius	temperature	Inbles, see NBS Nisk. P.	
Approximate Conversions to Metric	Bange 1	LENGTM	\$7.	8 0 - 6 4	AREA	9	8.0	5.6 5.6	0.4 MASS (weight)	28	\$.		VOLUME	•	9 (**************************************	0.67	879 876	0.03	X .	TEMPERATURE (exect)	5/9 (after	subtracting 32)	wersums and more still and SD Catalog No. C13,19,280	
Approximete Con	Was to East	1	aches :	: []			30	Series orders		i	powers seed	(3000)	1		Cables passes	The Species	Ĩ	* S	cubic feet	cubic yards		Februahen	Perperature.	 ii. i. 2.54 invaciny. For other each trunversions and more detained debies, see NBS Miss. Publ. 286. Units of Respita and Measures, Price 52.25, SD Catalog No. C13.19.380. 	
	į		• 4	. 7.1		ን	ъግ	k"i		3	: 4				1	3	L	r ī	ኒъገ	¥				on to 8 2.54 let	

ACKNOWLEDGMENT

Throughout this study, ARINC Research Corporation received enthusiastic a . invaluable support from the engineering and management staffs of the Federal Aviation Administration (FAA). Special acknowledgment is made to T. Morgan of the FAA.

This report presents the results of a study conducted by ARINC Research Corporation to develop the unit production cost of the Radar Beacon Transponder (RBX). The study was conducted for the Federal Aviation Administration (FAA) Systems Research and Development Service (SRDS) and Office of Systems Engineering Management (OSEM) under Contract DOT-FA76WA-3788.

On the basis of circuit and equipment designs developed by ARINC Research, the unit production cost (factory selling price) of the RBX was determined to be \$53,190. Equipment costs were derived using the accounting method of cost estimating. System development and production tooling costs were not included in the unit production cost. All costs are based on 1981 dollars without inflation. Table S-1 summarizes the cost analysis of the RBX.

Table S-1. RBX TRANSP	
Equipment	Cost
Receiver-Processor	7,813
Transmitter	29,640
Performance Monitor	8,877
Power Supplies	1,734
Cabinet	3,684
Antenna	1,442
Factory Selling Price	e 53,190

ARINC Research Corporation developed a modular transmitter design that used four 1,150-watt amplifier modules. Using the appropriate number of amplifier modules, we were able to estimate the costs of a 1 kilowatt (1 kW) transmitter and a 2 kW transmitter -- \$9,580 and \$17,530, respectively. On the basis of these costs, the cost of an RBX with a 1 kW

PROCEDING PAGE BLANK-NOE FILMS

transmitter would be approximately \$33,130; an RBX with a 2 kW transmitter would cost approximately \$41,080. It is emphasized, however, that if we were designing an RBX with a 1 kW or 2 kW transmitter, the transmitter design might be completely different.

CONTENTS

	Page
ACKNOWLEDGMENT	iii
SUMMARY	
CHAPTER ONE: INTRODUCTION	1-1
1.1 Background	1-1
1.2 Project Overview	1-1
1.3 Organization of the Report	1-1
CHAPTER TWO: COST ESTIMATING METHODOLOGY	
	· ·
2.1 Retail Cost Method	
2.2 Cost Input Data	
2.3 Cost Output Data	
CHAPTER THREE: RADAR BEACON TRANSPONDER C	CONFIGURATION
3.1 RBX Transponder Design	
3.2.2 Transmitter	
3.2.3 Performance Monitor	
CHAPTER FOUR: DEVELOPMENT OF RADAR BEACON	N TRANSPONDER COST 4-
4.1 Development of Subassembly Costs	s 4-:
4.2 RBX Cost	4-:
4.2.1 Receiver-Processor	4-:
4.2.2 Transmitter	4-:
	4-
	4-(
	Test 4-6
	4-6
	4-6

CONTENTS (continued)

Pa	age
CHAPTER FIVE: DEVELOPMENT OF COSTS FOR VARIATIONS IN TRANSMITTER POWER	5-1
5.1 1 kW Transmitter	5-1
CHAPTER SIX: RESULTS OF EVALUATION 6	5-1
6.1 Cost of Concept Evaluated	
APPENDIX A: RECEIVER-PROCESSOR PARTS LISTS AND COST DEVELOPMENT DATA SHEETS	1 -1
APPENDIX B: TRANSMITTER PARTS LISTS AND COST DEVELOPMENT DATA SHEETS	3-1
APPENDIX C: PERFORMANCE MONITOR/MODEM PARTS LISTS AND COST DEVELOPMENT DATA SHEETS	2-1
APPENDIX D: CHASSIS PARTS LISTS AND COST DEVELOPMENT DATA SHEETS . D)-1
APPENDIX E: MICROPROCESSOR SYSTEM INTERFACE SCHEMATIC	3-1

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND

The Federal Aviation Administration (FAA) is developing the Radar Beacon Transponder (RBX) to provide automatic control of Beacon Collision Avoidance System (BCAS) activity within specified distances from terminal areas. The technical staff at FAA Technical Center assembled and tested an engineering model of the RBX, using existing hardware modified for RBX operation. However, this engineering model did not reflect the expected production designs that would be generated by competitive procurement.

The FAA Systems Research and Development Service (SRDS), in conjunction with the Office of Systems Engineering Management (OSEM), tasked ARINC Research Corporation, under Contract DOT-FA76WA-3788, to develop the unit production cost of RBX equipment in quantities of 100 to 200 systems.

1.2 PROJECT OVERVIEW

The objective of this analysis was to develop an independent assessment of the unit production cost of electronics required to implement the RBX. ARINC Research Corporation developed the unit production cost of the RBX system, using the cost accounting method of cost estimating. This report presents the results of the evaluation. The results are presented in 1981 dollars, consistent with the technology and available data on which the estimates were based.

1.3 ORGANIZATION OF THE REPORT

The six chapters of this report address the RBX design and the technique used for estimating the unit production cost, and present the results of the analysis.

Chapter Two describes the cost estimating methodology used to obtain the desired unit production costs. Chapter Three presents the RBX configuration. Chapter Four presents the cost development for the RBX, and Chapter Five presents cost developments for variations of the RBX transmitter design. Chapter Six summarizes the results of the analysis. Finally, Appendixes A through D are detailed cost sheets associated with the analysis, and Appendix E presents the microprocessor system interface diagram.

CHAPTER TWO

COST ESTIMATING METHODOLOGY

ARINC Research developed the cost of the RBX by converting engineering requirements and functional specifications to a possible production equipment design. The ARINC Research design allowed for development of a detailed bill of materials.

2.1 RETAIL COST METHOD

The technique chosen for the cost evaluation is the industry standard accounting method of estimating production costs on the basis of estimates of the numbers and types of piece parts. The method requires detailed bills of materials and associated labor units, schematic diagrams, mechanical and electronic module layouts, and total quantity of units to be manufactured. Material costs are based on original equipment manufacturer (OEM) price lists in component quantities of 1,000 or greater. Allowances are made for large parts procurements common to equipment manufacturers. Finally, the accounting structures of potential manufacturers must be known to allow for labor, overhead charges, quality control costs, general and administrative (G&A) expenses, and the normal profits experienced in the electronics industry.

2.2 COST INPUT DATA

The data necessary for preparing cost estimating work sheets using the accounting method are usually taken directly from engineering bills of materials. The component part numbers are identified, and quantities are entered on the work sheets. Procurement costs of the components are obtained either from OEM price lists or, in cases where the component is unique or in a high-cost category, through direct quotes provided by OEM distributors. Labor associated with fabrication or assembly of components is estimated in terms of hours per 1,000 units in a mass production assembly line. Most manufacturers maintain historical data containing the average labor estimates for both manual and automatic insertion processes. These data provide the average labor hours associated with assembly of the components configured in a module (e.g., printed circuit card) or a subassembly. The total labor hours are comparatively evaluated to determine the complexity of the assembly in relation to the historical data.

If the module is complex (that is, it has high component density or requires printed circuit boards with multiple layers), a compensating complexity factor is applied to the labor estimate. A complexity factor is also applied to the labor estimate when the quantity production rates are small. The resulcing material costs and labor estimates provide the data necessary for developing the cost estimating output sheets.

2.3 COST OUTPUT DATA

The work sheets used in developing total equipment costs are structured to provide cost information on individual modules (or subassemblies) and total equipment units. This method provides information that is useful in evaluating life-cycle costs in cases where module stockage and associated costs are necessary for determining the recurring and nonrecurring logistics costs. Total equipment unit costs include unit assembly, test, and integration costs incurred when the equipment package is completed.

Costs are developed by considering the expense of materials, material handling charges, labor at either known or estimated hourly rates, average overhead obtained from a sampling of manufacturers, and factory inspection costs during production. An allowance of 25 percent of these direct costs is made to cover production engineering and quality control, and the result is the factory cost of the subassembly or electronic unit. The addition of G&A costs, together with a reasonable profit, provides the OEM, or selling, price of the unit.

The output data sheets are also structured to permit easy reevaluation of the expected costs of electronics by substituting different labor, overhead, G&A, profit, and markup rates if there is sufficient concern over the data used or if a manufacturer prefers to use the exact factory rates rather than the indstry average.

CHAPTER THREE

RADAR BEACON TRANSPONDER CONFIGURATION

The purpose of the ground-based RBX is to control the threat-detection sensitivity level of the BCAS in appropriately equipped aircraft. The RBX will be used in Air Traffic Control (ATC) terminal areas where the Discrete Address Beacon System (DABS) is not installed. The RBX will also relay displayed BCAS resolution advisory data to an automated ATC terminal facility. This chapter describes the RBX design, which we developed from RBX engineering requirement FAA-ER-250-3 of 13 February 1981.

3.1 RBX TRANSPONDER DESIGN

To develop the bill of materials required in determining the unit production cost of the RBX, ARINC Research designed an RBX to meet the FAA's maintenance concept of the 1980s. Our design consists of five major modules housed in a 68-inch-high cabinet. All modules except the power supplies use packaging concepts that allow subassemblies of the modules to be plug-in field or line-replaceable units (LRUs). This allows the RBX to be restored to service with subassembly replacement in the event of a failure.

The five major modules that are integrated into the cabinet-mounted racks or drawers are the receiver-processor, transmitter, performance monitor, and two power supply modules. An omnidirectional antenna is also required. Figure 3-1 shows a possible RBX configuration.

Figure 3-2 presents a functional description of the entire RBX and displays the interconnection of the various modules in the system. The intent of the figure is to show the interrelationships of the major modules of the RBX.

3.2 RBX MODULES

3.2.1 Receiver-Processor

The receiver-processor module is packaged into a standard 19-inch drawer. It consists of an RF front end, two analog processing printed circuit boards (PCBs), two timing PCBS, and three digital PCBs containing

Figure 3-1. RBX AND ANTENNA ASSEMBLY

Figure 3-2. RBX Functional Diagram

a microprocessor, its peripherals, and associated controls. Inputs to and outputs from the receiver are through rear-mounted connectors. Figure 3-3 illustrates our concept of the receiver-processor module.

Figure 3-3. RBX RECEIVER-PROCESSOR MODULE

The RF front end consists of a coupler, preselector, and RF shielded casting. The casting, designed as an LRU, contains the limiter, low-noise amplifier (LNA), local oscillator, and mixer. The limiter, LNA, and local oscillator employ microstrip design techniques. The coupler, preselector, and mixer were considered to be purchased items. The casting enclosure was costed as a manufactured item. A high assembly time is associated with the RF front end, because matched rigid cable is used for interconnections.

The seven PCBs of the receiver-processor are standard 6-inch-by-8-inch PCBs. Four of the PCBs are contained in an RF shielded enclosure. Of these four, two contain the IF, pulse detection, pulse decoding, DPSK demodulation, and associated circuitry; one contains the timing clock circuitry; and the fourth contains the time-of-day PCB, which is a purchased item. The remaining three PCBs contain the processor circuitry.

The processor is a microprocessor-based data bus system whose primary function is data handling and sequencing. Appendix E shows the system interface schematic for the processor.

The sensitivity map for range and altitude is stored in a PROM to allow for possible changes. The sensitivity required by any interrogator is determined in an iterative manner. Once the 112-bit message from the BCAS is received and loaded into the data shift register, the microprocessor starts a sequence of events to determine the required sensitivity. The lowest altitude of the sensitivity map is presented to one side of a comparator, while the other side of the comparator looks at the transmitted altitude. The comparator sends a high, low, or equal response to the microprocessor. This cycle continues up the stored altitude map until a greater-than response is received on the interrupt line to the microprocessor. Each time a new altitude is recalled from the PROM, a counter is advanced. Whenever a cycle is run from the range map, a similar counter is advanced. The counter values are read into the PROM to derive a sensitivity. The microprocessor performs subroutines to check jitter near map boundaries.

To start a squitter transmission, the clock circuits strobe the micro-processor. Since the shift register used to hold received data is also used to store the transmission data, a squitter transmission requires only a read from the ROM. When replying to an aircraft, the RBX stores the aircraft address in the RAM until the transmission formatting sequence starts.

The microprocessor also stores transmitted data when so requested by ATC. The microprocessor is also used to control performance monitor data storage.

The performance monitor drives interrupt lines to the microprocessor as well as encode data for requests from ATC. The microprocessor, when requested, will recall data from the RAM and the performance monitor to be sent to the Common ICAO Data Interchange Network (CIDIN) interface.

3.2.2 Transmitter

The transmitter consists of six modules packaged into a standard 19-inch rack. The modules, each of which is a removable plug-in unit, consist of an intermediate power amplifier (IPA) module, four 1,150-watt amplifier modules, and a four-to-one (4:1) combiner module. Inputs to each of the modules are through rear-mounted connectors. Figure 3-4 is a block diagram of the transmitter; Figure 3-5 shows the packaged transmitter rack.

We chose a modular approach in designing the transmitter to allow the RBX to remain operational at a reduced power capability if any one power amplifier module failed. This modular approach also enhances the maintainability of the RBX by allowing direct replacement of plug-in modules.

Figure 3-4. BLOCK DIAGRAM OF TRANSMITTER MODULES

Figure 3-5. RBX TRANSMITTER MODULES

3.2.2.1 Intermediate Power Amplifier Module

The IPA module is a three-section casting packaged into a purchased RF shielded enclosure. The casting contains a modulator, oscillator, two 150-watt amplifiers, and two 1:2 power dividers. All subassemblies of the IPA use microstrip technology.

The output from each of the 150-watt amplifiers is divided via a 1:2 Wilkinson network that uses Balun coax with appropriate phasing to protect the amplifier transistors in case of a point failure.

3.2.2.2 1,150-Watt Amplifier Module

We used four 1,150-watt amplifier modules to obtain the required output of 4,000 watts. This modular approach allows reconfiguration to 1,000 or 2,000 watts output if desired, with redesigns of the IPA and combiner modules.

Each module consists of a manufactured two-section casting packaged into a purchased RF shielded enclosure. The amplifier itself operates from a minimum 63-watt input. The input is passed through a 1:3 power divider, which in turn feeds three amplifier subassemblies, each of which provides approximately 420 watts. Each 420-watt subassembly has four 110-watt power transistors driven by a single 100-watt transistor, using Wilkinson networks with quadrature phasing for power dividing and combining. In the case of a transistor failure, the quadrature phasing allows reflected power to be dissipated in an isolation resistor rather than an adjacent transistor. The power from the three subassemblies is combined through a 3:1 microstrip combiner and then passed through a circulator to provide essentially 1,150 watts of power at the module output.

Each 1,150-watt module contains its own power supply that utilizes large storage capacitors to provide essentially constant energy to the transistors during the pulse time.

3.2.2.3 4:1 Combiner Module

The 4:1 combiner module combines the inputs from the four 1,150-watt modules to provide a power output of approximately 4,000 watts.

A casting identical to that of the IPA module is used to achieve economies of scale, although only one section is needed for the combiner board. The stripline board uses a Wilkinson combiner made of Balun coax. The casting is packaged into a purchased enclosure.

3.2.3 Performance Monitor

The performance monitor module contains not only the performance monitor PCBs, but also the modem and CIDIN line interface required of an automated ATC facility. Both the required modem and line interface module were priced from commercially available sources.

The required performance monitoring, packaged in two PCBs, monitors the receiver test gate and noise test pulse from the clock as well as the video output -- all of which constitute the receiver gain test and receiver sensitivity test. The Pl transmit pulse, clock status flag, and remote thermistor are also monitored. The outputs of the performance monitor are buffered to the processor and passed to the local status indicator panels contained on the module front panel.

3.2.4 Power Supplies

The RBX requires 5-, 12-, and 48-volt power supplies. We used two rack-mounted power supply modules that were considered to be purchased as completely prepacked units containing all required front panels, meters, switches, handles, and connectors. The 48-volt power supply is contained in one module, and the 5- and 12-volt power supplies are contained in the second multiple-output module.

3.2.5 Cabinet

The cabinet housing the RBX modules is a commercially available cabinet containing a ventilating grill and blower assembly for cooling. The cabinet is approximately 68 inches high and 24 inches deep. The front width of 24 inches is sized to accept standard 19-inch racks and drawers. The cabinet assembly also includes various power strips, connectors, cables, and the wiring between modules, as well as the antenna connections and circulator.

3.2.6 Antenna

The antenna used with the RBX is a commercially available omnidirectional antenna for 1,015 to 1,040 MHz operation. It is vertically polarized with 8 dBi (referenced to isotropic) gain at 1,030 MHz. It may be mounted to a pipe 1 to 3 inches in diameter. The antenna is approximately 3 feet long and weighs 20 pounds.

CHAPTER FOUR

DEVELOPMENT OF RADAR BEACON TRANSPONDER COST

RBX equipment costs were developed on subassembly levels and combined to identify the expected cost of the transponder system. This chapter presents the results of the cost development. Information necessary to describe the equipment was developed by ARINC Research through detailed design of the RBX. This allowed development of a representative bill of materials for each subassembly. Parts chosen for the bill of materials were designed to meet the electronic equipment requirements of FAA specification FAA-G-2100/1.

4.1 DEVELOPMENT OF SUBASSEMBLY COSTS

The cost of each transponder module identified in Chapter Three was developed using traditional accounting methods. These methods require detailed parts identification for the production of modules, subassemblies, and systems. Each component was priced on the basis of OEM price lists for quantities necessary for production assemblies. A material handling charge of 25 percent was added to the cost of materials to allow for inventory control, pretesting, expected yield, and in-plant distribution. For major purchased items such as a power supply or antenna, a material handling charge of 13 percent was used in lieu of 25 percent, because less in-plant handling is required.

Calculations for assembly labor for each component were based on the nature of the component (e.g., two-lead devices, three-lead devices), using semiautomated insertion processes. The labor rate was derived from geographically corrected Department of Labor statistics for the electronic industry. A 1981 labor rate of \$17.85 per hour was assumed to be typical for the expected manufacturers of this specialized electronics. Since the labor rate used is a semiloaded hourly wage, an overhead burden of 135 percent was applied to the labor costs. A subassembly inspection cost of 5 percent was added to the labor and burden. The addition of a 25 percent quality control and engineering cost to the sum of the material and labor costs provided the direct production cost of a module or the system. A 20 percent G&A cost and an expected 15 percent profit were included in determining the factory selling price of the unit. Since typical production practice is to manufacture equipment in subassemblies, the complete system must be assembled and tested before it is released for sale. To account

for this activity and expense, an assembly and test cost was included in each cost analysis. The same markups and rates were used in determining the assembly and test cost, except that there are no material costs associated with the activity.

The following sections present the results of applying this cost estimating method to each module of the RBX presented in Chapter Three. Detailed parts lists associated with each configuration are included in the Appendixes.

4.2 RBX COST

4.2.1 Receiver-Processor

The receiver-processor module consists of an RF front end and seven PCBs containing the analog processor, decoder, timing assembly, and digital processor assembly. The entire receiver-processor is integrated into a chassis fitting a standard 19-inch rack. The chassis front panel contains the various required switches, lamps, and test points. Table 4-1 presents the cost development of the receiver-processor subassemblies based on material and labor estimates of each subassembly. Detailed parts list and labor data are presented in Appendix A. The assembly and test cost column of Table 4-1 reflects the cost of integrating the subassemblies into a working electronics unit and the cost associated with burn-in and final testing of the unit. The total expected selling price of the receiver-processor assembly is \$7,813.

4.2.2 Transmitter

The transmitter module consists of six major modules -- the intermediate power amplifier, four 1,150-watt amplifiers, and a 4:1 combiner. The modules are designed to be independently inserted into a rack containing appropriate aligning pins and connectors. The rack itself is designed to fit into a standard 19-inch cabinet. Table 4-2 presents the cost development of the transmitter subassemblies. Detailed parts list and labor data are presented in Appendix B. The large cost associated with the frame in Table 4-2 is because six connectors are required at \$150 each. The total expected selling price of the transmitter assembly is \$29,640.

4.2.3 Performance Monitor

The performance monitor module includes the two performance monitor PCBs and the modem and line interface required for the CIDEN interface It is designed to fit into a chassis for installation in a standard 19-inch rack. The chassis front panel includes all necessary switches and lights. Table 4-3 presents the cost development of the performance monitor subassemblies. Detailed parts list and labor data are presented in Appendix C. The total expected selling price of the performance monitor assembly is \$8,877.

	Table 4-1.	RBX RECEIV	RBX RECEIVER-PROCESSOR COST DEVELOPMENT	OR COST DE	VELOPMENT ((1981 DOLLARS)			
				Σ	Module Cost				
Cost Element	RF Front End	Analog Processor	Decoder	Timing PCB	Time-of- Day PCB*	Processor Assembly	Chassis	Assembly and Test	Total
Material Cost	428.91	335.79	163.17	98.30	177.00	489.94	265.81		1,958.92
Purchased Items (13% of Material Cost)		+		1	23.01			1	23.01
Material Handling (25% of Material Cost)	107.23	56*£3	40.79	24.58		122.49	66.45		445.49
Labor (\$17.85 per Hour)	182.96	51.50	55.62	75.06	3.57	138.73	233.25	111.12	851.81
Burden (135% of Labor)	247.00	69.53	60.27	101.33	4.82	187.29	314.88	150.01	1,149.95
Inspection (5% of Labor and Burden)	21.50	9.05	6.54	8.82	0.42	16.30	27.41	13.06	100.10
Subtotal	09.786	546.82	341.21	308.09	208.82	954.75	907.82	274.19	4,529.30
Engineering and Quality Control (25% of Subtotal)	246.90	136.71	85.30	77.02	52.21	238.69	226.95	68.55	1,132.33
Factory Cost	1,234.50	683.53	426.51	385.11	261.03	1,193.44	1,134.77	342.74	5,661.63
GEA (20% of Factory Cost)	246.90	136.71	85.30	77.02	52.21	238.69	226.95	68.55	1,132.33
Total Direct Cost	1,481.40	820.24	511.81	462.13	313.24	1,432.13	1,361.72	411.29	6,793.96
Profit (15% of Total Direct Cost)	222.21	123.04	76.77	69.32	46.99	214.82	204.26	61.69	01.610,1
Selling Price	1,703.61	943.28	588.58	531.45	360.23	1,646.95	1,565.98	472.98	7,813.06
*Purchased Item									

Cost Element IPA Module Material Cost 1,039.16 Furchased Items (13% of Material Cost) Material Handling 259.79 (25% of Material Cost)	 	1.15 kW Module			Module Cost				
Oost)		1.15 kW Module							
Cost)			1.15 kW Module	1.15 kW Module	1.15 kW Module	2:1 Combiner	Frame	Assembly and Test	Total
Cost)		1,096.05	1,096.05	1,096.05	1,096.05	287.68	935.54	-	6,646.58
Cost)		1	1	-	1	-	-	-	1
	9.79	274.01	274.01	274.01	274.01	71.92	233.89	-	1,661.14
Labor (\$17.85 per Hour)	527.59	653.58	653.58	653.58	653.58	232.03	199.92	23.21	3,597.07
Burden 712. (135% of Labor)	712.25	882.33	882.33	882.33	882.33	313.24	269.89	31.33	4,856.03
Inspection 61.	61.99	76.80	76.80	76.80	76.80	27.26	23.49	1.16	421.10
Subtotal 2,600.78	 -	2,982.77	2,982.77	2,982.77	2,982.77	932.13	1,662.73	55.70	17,182.42
Engineering and Quality 650. Control (25% of Subtotal)	650.20	745.69	745.69	745.69	745.69	233.03	415.68	13.93	4,295.60
Factory Cost 3,250.98		3,728.46	3,728.46	3,728.46	3,728.46	1,165.16	2,078.41	69.63	21,478.02
GER (20% of Factory Cost) 650.	650.20	745.69	745.69	745.69	745.69	233.03	415.68	13.93	4,295.60
Total Direct Cost 3,901.18	<u> </u>	4,474.15	4,474.15	4,474.15	4,474.15	1,398.19	2,494.09	83.56	25,773.62
Profit 585. (15% of Total Direct Cost)	585.18	671.12	671.12	671.12	671.12	209.73	374.11	12.53	3,866.03
Selling Price 4,486.36	├─┤	5,145.27	5,145.27	5,145.27	5,145.27	1,607.92	2,868.20	96.09	29,639.65

Table 4-3. RBX PERFO	ORMANCE MONI	TOR COST DE	VELOPMENT	(1981 DOLLA	ARS)
		Mo	odule Cost		
Cost Element	Monitor	Modem	Chassis	Assembly and Test	Total
Material Cost	189.06	4,300.00	185.83		4,674.89
Purchased Items (13% of Material Cost)		559.00			559.00
Material Handling (25% of Material Cost)	47.27		46.46		93.73
Labor (\$17.85 per Hour)	155.5€	3.57	132.57	33.02	324.72
Burden (135% of Labor)	210.01	4.82	178.97	44.58	438.38
Inspection (5% of Labor and Burden)	18.28	0.42	6.63	3.88	29.21
Subtotal	620.18	4,867.81	550.46	81.48	6,119.93
Engineering and Quality Control (25% of Subtotal)	155.04		137.62	20.37	313.03
Factory Cost	775.22	4,867.81	688.08	101.85	6,432.96
G&A (20% of Factory Cost)	155.04	973.56	137.62	20.37	1,286.60
Total Direct Cost	930.26	5,841.37	825.70	122.22	7,719.55
Profit (15% of Total Direct Cost)	139.54	876.21	123.85	18.33	1,157.93
Selling Price	1,069.80	6,717.58	949.55	140.55	8,877.48

4.2.4 Power Supplies

The three required power supplies, considered to be purchased items, are completely packaged with all appropriate meters, switches, and connectors ready for installation in the 19-inch rack. The 48-volt power supply is in one chassis, and the 12-volt and 5-volt power supplies are packaged together in a second chassis as a multiple output power supply system. Table 4-4 presents the cost development of the power supplies. The labor costs represent the minimal effort required for installing the power supplies in the rack. No quality control or engineering costs are incurred, because they are reflected in the power supply package purchase price. The total expected selling price of the power supplies is \$1,734.

4.2.5 Cabinet and Assembly and Test

The cabinet assembly is the actual cabinet into which the other sub-assemblies are mounted. The cost associated with the cabinet includes not only the cabinet, but the blowers, power strips, various connectors, the circulator between the antenna and the transmitter/receiver-processor, and all the labor time associated with the wiring between subassemblies.

The assembly and test time associated with the cabinet is the time needed to mount the subassemblies into the cabinet, make connections, and ensure that the RBX is in a state of operational readiness.

Table 4-5 presents the cost development of the cabinet and assembly and test of the cabinet. The cabinet has an associated cost of \$3,498, while the assembly and test time adds an additional \$186 to the cost, for a total cost of \$3,684. Detailed parts list and labor data are presented in Appendix D.

4.2.6 Antenna

The required antenna for the RBX is considered to 0 a pur wised item ready for installation. Table 4-6 presents the cost development of the antenna. The expected selling price of the antenna is \$1,442.

4.2.7 Cost Summary

Table 4-7 shows the cost of the RBX with a 4 kW output. The costs shown are the per-unit production costs of the equipment, assuming production quantities of 100 to 200 units. System development costs and production tooling costs are not included. The factory selling price is the expected F.O.B. cost to the procuring activity.

<i>Table 4-4.</i> RBX SU (1981	PPLY COST : DOLLARS)	DEVELOPMENT	י
	М	odule Cost	
Cost Element	48-Volt Power Supply	12- and 5-Volt Power Supply	Total
Material Cost	565.00	535.00	1,100.00
Purchased Items (13% of Material Cost)	73.45	69.55	143.00
Material Handling (25% of Material Cost)			
Labor (\$17.85 per Hour)	2.68	2.68	5.36
Burden (135% of Labor)	3.62	3.62	7.24
Inspection (5% of Labor and Burden)	0.32	0.32	0.64
Subtotal	645.07	611.17	1,256.24
Engineering and Quality Control (25% of Subtotal)			
Factory Cost	645.07	611.17	1,256.24
G&A (20% of Factory Cost)	129.01	122.23	251.24
Total Direct Cost	774.08	733.40	1,507.48
Profit (15% of Total Direct Cost)	116.11	110.01	226.12
Selling Price	890.19	843.41	1,733.60

Table 4-5. RBX CABI COST DEV	NET AND ASS ELOPMENT (1		
	1	Module Cost	
Cost Element	Chassis	Assembly and Test	Total
Material Cost	988.96		988.96
Purchased Items (13% of Material Cost)			
Material Handling (25% of Material Cost)	247.24		247.24
Labor (\$17.85 per Hour)	323.17	43.73	366.90
Burden (135% of Labor)	436.29	59.04	495.33
Inspection (5% of Labor and Burden)	32.31	5.14	37.45
Subtotal	2,027.97	107.91	2,135.88
Engineering and Quality Control (25% of Subtotal)	506.99	26.98	533.97
Factory Cost	2,534.96	134.89	2,669.85
G&A (20% of Factory Cost)	506.99	26.98	533.97
Total Direct Cost	3,041.95	161.87	3,203.82
Profit (15% of Total Direct Cost)	456.29	24.28	480.57
Selling Price	3,498.24	186.15	3,684.39

Table 4-6. RBX ANTENNA COS OPMENT (1981 DO	
Cost Element	Cost
Material Cost	925.00
Purchased Items (13% of Material Cost)	120.25
Material Handling (25% of Material Cost)	
Labor (\$17.85 per Hour)	
Burden (135% of Labor)	
Inspection (5% of Labor and Burden)	
Subtotal	
Ergineering and Quality Control (25% of Subtotal)	
Factory Cost	1,045.20
G&A (20% of Factory Cost)	209.05
Total Direct Cost	1,254.25
Profit (15% of Total Direct Cost)	188.14
Selling Price	1,442.39

Table 4-7. RBX TRANSPO (1981 DOLLA	
Equipment	Cost
Receiver-Processor	7,813
Transmitter	29,640
Performance Monitor	8,877
Power Supplies	1,734
Cabinet	3,684
Antenna	1,442
Factory Selling Price	e 53,190

CHAPTER FIVE

DEVELOPMENT OF COSTS FOR VARIATIONS IN TRANSMITTER POWER

The cost analysis of prototype equipment or designs is often developed from engineering requirements or equipment that is still in various stages of evaluation. Evaluation criteria used must take these limitations into account and allow alternative scenarios to be evaluated for costs.

The RBX transmitter is currently specified to have a power output of 4 kW measured at the transmitter. However, the FAA requested a cost differential of transmitters with approximately 1 kW to 2 kW transmitter power outputs. Our modular transmitter design allowed us to determine such a cost without completely redesigning the transmitter. It must be emphasized, however, that if a 1 kW or 2 kW transmitter were being developed, a completely different design approach might have been chosen.

5.1 1 KW TRANSMITTER

Figure 5-1 is a diagram of the 4 kW transmitter. The possible cost of a 1 kW transmitter can be developed with the assumption that only one 1,150-watt amplifier module would be required. This would allow us to delete one 150-watt amplifier from the IIA, along with both 1:2 power divider networks. We could also eliminate the 4:1 power combiner and four connectors from the frame. The reduction of modules in the transmitter would also allow a reduction in assembly and test time. Table 5-1 shows the overall cost for our assumed 1 kW transmitter. The total cost of \$9,582 is approximately 32 percent of the cost of the 4 kW transmitter design.

5.2 2 KW TRANSMITTER

A 2 kW transmitter may also be conveniently derived from Figure 5-1 by using only one 150-watt amplifier and two 1,150-watt amplifier modules, and replacing the 4:1 combiner with a 2:1 combiner. This would allow a reduction in both frame cost and assembly and test time. Table 5-2 shows the assumed cost for the 2 kW transmitter. The total cost of \$17,531 is approximately 83 percent greater than the cost of a 1 kW transmitter, but 41 percent less than the cost of a 4 kW transmitter.

Figure 5-1. BLOCK DIAGRAM OF TRANSMITTER MODULES

5.3 RBX COST WITH VARIATIONS IN TRANSMITTER POWER

The total cost of the RBX with reduced transmitter power outputs would vary only with the cost of the transmitter; all other modules and subassemblies would remain the same. A reduced capacity 48-volt power supply could reduce the cost of the RBX by an additional \$115. This option was not used in our analysis, however. Thus, an RBX with a 1 kW transmitter would cost approximately \$33,130; the cost of an RBX with a 2 kW transmitter would be approximately \$41,080.

Table 5-1. 1 KW R	BX TRANSMIT	PER COST DE	VELOPMENT (.981 DOLLARS)
			Module Cos	it	
Cost Element	IPA Module	1.15 kW Module	Frame	Assembly and Test	Total
Material Cost	878.50	1,096.05	335.54		2,310.09
Purchased Items (13% of Material Cost)			***		
Material Handling (25% of Material Cost)	219.63	274.01	83.85		577.49
Labor (\$17.85 per Hour)	315.00	653.58	92.82	19.64	1,081.04
Burden (135% of Labor)	425.25	882.33	125.31	26.51	1,459.40
Inspection (5% of Labor and Burden)	37.02	76.80	10.91	2.31	127.04
Subtotal	1,875.40	2,982.77	648.43	48.46	5,555.06
Engineering and Quality Control (25% of Subtotal)	468.85	745.69	162.11	12.12	1,388.77
Factory Cost	2,344.25	3,728.46	810.54	60.58	6,943.83
G&A (20% of Factory Cost)	468.85	745.69	162.11	12.12	1,388.77
Total Direct Cost	2,813.10	4,474.15	972.65	72.70	8,332.60
Profit (15% of Total Direct Cost)	421.97	671.12	145.90	10.90	1,249.89
Selling Price	3,235.07	5,145.27	1,118.55	83.60	9,582.49

Table 5-2.	{	BX TRANSMIT	TER COST DE	VELOPMENT (2 KW RBX TRANSMITTER COST DEVELOPMENT (1981 DOLLARS)	(S	
				Module Cost		į	
Cost Element	IPA Module	1.15 kW Module	1.15 kW Module	2,1 Combiner	Frame	Assembly and Test	Total
Material Cost	16.668	1,096.05	1,096.05	284.86	635.44	;	4,012.31
Purchased Items (13% of Material Cost)	-	-			-		**
Material Handling (25% of Material Cost)	224.98	274.01	274.01	71.22	158.86		1,003.08
Labor (\$17.85 per Hour)	433.22	653.58	653.58	177.95	146.37	21.42	2,086.12
Burden (135% of Labor)	584.85	882.33	882.33	240.23	197.60	28.92	2,816.26
Inspection (5% of Labor and Burden)	50.90	76.80	76.80	20.91	17.20	2.52	245.13
Subtotal	2,193.86	2,982.77	2,982.77	795.17	1,155.47	52.86	10,162.90
Engineering and Quality Control (25% of Subtotal)	548.47	745.69	745.69	198.79	288.87	13.22	2,540.73
Factory Cost	2,742.33	3,728.46	3,728.46	993.96	1,444.34	80.99	12,703.63
GEA (20% of Factory Cost)	548.47	745.69	745.69	198.79	288.87	13.22	2,540.73
Total Direct Cost	3,290.80	4,474.15	4,474.15	1,192.75	1,733.21	79.30	15,244.36
Profit (15% fo Total Direct Cost)	493.62	671.12	671.12	178.91	259.98	11.90	2,286.65
Selling Price	3,784.42	5,145.27	5,145.27	1,371.66	1,993.19	91.20	17,531.01

CHAPTER SIX

RESULTS OF EVALUATION

This study has developed the unit production cost of an RBX on the basis of the accounting method of cost estimating. The RBX design data used for the cost analysis came from RBX circuit and equipment designs developed by ARINC Research Corporation. The production cost data were developed through detailed analysis of the methods of several leading electronics manufacturers producing both ground and airborne electronics equipment.

6.1 COST OF CONCEPT EVALUATED

Table 6-1 summarizes the unit production cost of the RBX developed by the accounting method. The values indicate the probable factory selling price per RBX. System development and production tooling costs are not included in the unit production cost. All costs are based on 1981 dollars without inflation.

Table 6-1. RBX TRANSPO (1981 DOLL)	
Equipment	Cost
Receiver-Processor	7,813
Transmitter	29,640
Performance Monitor	8,877
Power Supplies	1,734
Cabinet	3,684
Antenna	1,442
Factory Selling Pric	e 53,190

6.2 DEVELOPMENT OF COSTS FOR VARIATIONS IN TRANSMITTER POWER

The modular transmitter design allowed variations in the transmitter power outputs to be costed with slight redesigns of the transmitter IPA and/or the combiner module. Adaption of our modular transmitter design allowed us to postulate that a 1 kW transmitter would cost approximately \$9,580, and a 2 kW transmitter would cost approximately \$17,530. These transmitter costs may be compared with a 4 kW transmitter cost of \$29,640.* It must be emphasized, however, that if our intent had been to develop a 1 kW or 2 kW transmitter, a completely different design approach might have been chosen.

^{*}The cost of an RBX with a 1 kW transmitter would be approximately \$33,130; an RBX with a 2 kW transmitter would cost approximately \$41,080.

APPENDIX A

RECEIVER-PROCESSOR PARTS LISTS AND COST DEVELOPMENT DATA SHEETS

This appendix contains the work sheets used to develop costs of modules employed in the receiver-processor. These costs were the basis for the calculations presented in Chapter Four of the report.

SHEET 1 OF 14

SYSTEM ROX - RECEIVER - PROCESSOR

SUB-ASSEMBLY RF FRONT END

TTEN NAME OR	À	TIND	TOTAL	LAROR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY * FAIL. RATE
CALEGORI		T SOS	I.Sp.	PIANUFAC TURING	ASSEMBLY	PATE	FAILURE RATE	X ONLT COST
HIXER	1	75.00	75.00		50			
PRESELECTOR	1	84.00	84.00		50			
COUPLER	1	80.00	80.00		50			
CASTING	1	32.00	32.00		100			
COVER	1	2.50	2.50		15			
CABLE (6in.)	5	1.10	5.50		125			
CONNECTOR (SMA)	10	2.65	26.50		900			
MISC. HDW.	LOT	1.00	1.00		50			
LIMITER	1	36.05	36.05	2454	348			
LOCAL OSCILLATO	-	32.60	32.60	2454	211		,	
LOW NOISE AMP	1	53.76	53.76	2454	489			
							•	
TOTALS			428.91	7362	2888			

A-3

PRECEDING PAGE BLANK-NOT FIRE

SHEET 2 OF 14

SYSTEM RF FRONT END

SUB-ASSEMBLY LIMITER

TEN NAME OR),	TING	TOTAL.	LAROR HOURS 11'R 1000 UNITS	1000 UNITS	UNIT	10TAL	OTY × FAIL. RATE
CALEGORY		1865 —	i e	NANUFACTURING	ASSEMBLY	PATE	RATE	
PET	1	. 75	27.		9			
SH2	2	5.30	10.60		16			
PLS2		19:00	19.00		80			
RESISTOR	2	.03	90.		10			
CAPACITOR	4	.13	.52		20			
COIL	1	.12	.12		9			
SUBSTRATE	1	5.00	5.00	2454	50			
		_						
							•	
		_						
							-	
TOTALS			36.05	2454	116 x 3 348			
	-	-	•	-	•	•	•	-

SHEET 3 OF 14

SYSTEM RF FRONT END SUB-ASSEMBLY LOCAL OSCILLATOR

OTY × FAIL. RATE × UNIT COST TOTAL FALLURE RATE UNIT FAILURE PATE LAROR HOURS PER 1000 UNITS 237 x 3 711 ASSEMBLY œ 3 5 2 2 2 36 9 a HANUFACTURING 2454 2454 TOTAL. 13,25 7.29 3.90 143 .46 .27 22. 32.60 5.00 UNIT 13.25 7.29 1,95 .23 .28 5.00 .03 ŲΤΫ 9 CAPACITORY-VAR CATEGORY CAPACITOR SUBSTRATE RESISTOR 1N4154 2N3546 TOTALS FILTER DG125 COIT

SHEET 4 OF 14

SYSTEM RE FRONT END

SUB-ASSEMBLY LOW NOISE AMPLIFIER

ITEM NAME OR	QTY	UNIT	TOTA!.	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	107AL	OTY × FAIL. RATE
CATEGORY		TS00	1.002	MANUFACTURING	ASSEMBLY	PATE	RATE	X ONLI COST
LT 4700	2	18.00	36.00		20			
RESISTOR	6	. 77	6.93		45			
CAPACITOR .	7	0 8 .	5.60		42			
COIL	1	.23	.23		9			
SUBSTRATE	1	5.00	5.00	2454	20			
							•	
TOTALS			53.76	2454	163 x 3 489		. — . —	

SYSTEM RBX - RECEIVER-PROCESSOR

SHEET 5 OF 14

SUB-ASSEMBLY ANALOG PROCESSOR

ITEM NAME OR	È	TINI	TOTA!	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	107AL	OTY × FAIL. RATE
CATESCORI		TS03	7 S T	MANUFACTURING	ASSEMBLY	PATE PATE	RATE	x own cost
uA715	1	5.50	5.50		8			
MPS6515	1	.32	. 32		8			
SL 1521	8	29.35	234.80		64			
IN4153	1	.30	. 30		5			
IN5711	5	1.43	7.15		25			
2N2222A	1	40	40		9			
2NS086	2	.21	.42		12			
RESISTOR	35	0.3	1.05		175			
RESISTOR (1K)	10	.71	7.10		5.0			
CAPACITOR	23	.13	2.99		115			
CAPACITOR VAR	1	1.14	1.14		5			
wir	1	.12	.12		g			
PC.BOARD	1	12.00	12.00	818	50			
MISC. HIM.	LOT	. 50	. 50		25			
COMMECTOR	1	2.00	2.00		30			
PASS. RO. FILTER	1	60.00	60.00		25			
DC. TEST	•	-	•		80			
							٠	
TOTALS			335.79		689 x 3 2067			

SHEET 6 OF 14

SYSTEM RECEIVER-PROCESSOR

SUB-ASSEMBLY DECODER

1 3.28 1 3.28 1 1.39 10 2 1.39 10 2 1.19 10 3 20 11 1.10 11 1.15 11 1.50 11 1.50 11 1.50 11 1.50 11 1.50	1.28 1.59 1.59 1.21 2.38 2.38 50 50 60 .40	ASSEMBLY 10 10 24 10 5 5 10 25 16 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	PATE R	RATE:
229 . 2 1.29 2 228AL 1 3.21 3 228AL 1 3.21 3 2366 2 1.19 209 5 1.0 20 1.19 20 2 1.0 20 1.10 20	. 59 . 58 . 21 . 21 2 . 38 . 50 . 60 . 40	10 10 24 25 10 10 66 6		
229 . 2 1.29 2 2 228AL 1 3.21 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.58 1.21 2.38 5.0 5.0 .60 .40	10 24 10 10 18 6		
259 · 2 1.29 2 258AL 1 3.21 3 77 1 .21 566 2 1.19 509 5 .10 509 5 .10 60 1 1.00 61 1 1.00 71 1.15 71 1	. 58 . 21 2 . 38 . 50 . 60 . 40 . 40	24 10 5 25 18 6 6		
258AL 1 3.21 3 77 1.19 3 566 2 1.19 4 509 5 .10 40 11 11 11 11 11 11 11 11 11 11 11 11 11	21 .2.38 .50 .60 .40	10 25 25 10 6 6		
266 2 1.19 209 5 1.19 10 1 1.00 11 1 1.00 11 1 1.15 11 1 1.50 11 1 1 1.50 11 1 1 1.50 11 1 1 1.50 11 1 1 1.50 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.21 2.38 50 .60 .40 .17	5 10 25 18 6 6		
566 2 1.19 509 5 .10 10 .20 11 .40 1 .17 1 .17 1 1.15 1 1.30 1 1.50 1 1.50 1 1.50 1 1.50	50 .60 .40 .17	10 25 18 6 6		
2 10 11 1.80 1.1 1 1.80 1.1 1 1.80 1.1 1 1.15 1.1 1 1.15 1.1 1 1.50 1.1 1 2.50 2.1	.60 .40 .17	19 6 6		
11 1.90 1.00 1.00 1.00 1.00 1.00 1.00 1.	.40	80 0 4 ½		
11 1.40 2 1.74 1. 2 1.74 1. 1 1.80 1. 1 1.15 1. 1 1.50 1. 1 1.50 1. 1 1.50 1. 1 1.50 1. 1 1.50 1. 1 1.50 1. 1 1.50 1.	.40	1 9 1 9		
2 .74 2 .74 1 1.80 1 1.15 1 1.50 1 1.50 1 2.50	.17	. je		
2 .74 2 .74 1 1.80 1 1.15 1 1.30 1 1.50 1 2.50	.48			
1 1.80 1 1.15 1 1.15 1 1.50 1 2.50		10		
1 1,80 1 1.15 1 1.30 1 1.50 1 2.50	.48	16		
1 1.15 1 1.30 1 1.50 1 2.50	.80	œ		
1 1.30	.15	8		
1 1.50	. 30	8		
1 2.50	.50	8		
4 2.50	.50	10		
	00	40		•
34T04.	7.40	32		
541,821 2 .60 1.20	. 20	16		
RESISTOR 24 .03 .72	. 72	120		
RESISTOR-VAR 1 42 .42	.42	15		
TOTALS				

SHEET 7

0.14

SYSTEM HBX - RECEIVER

SUB-ASSEMBLY DECODER

TEN NAME OR	OT.	UNIT	TOTAL.	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY × FAIL. RATE
CALEGORI		TSCO	Teon	HANUFACTURING	ASSEMBLY	PATEURE	FAILURE	× UNIT COST
CAPACITOR	16	.13	2.08		80			
COIL	9	.12	.72		30			
PILTER(SAW)	1	100,00	100.00		25			
PC BOARD	1	12.00	12.00	818	50			
MISC. HDW.	LOT	1.50	1.50		9			
COMMECTOR	1	2.00	2.00		30			
TESTING	١	į	-		80			
								1
								:
							•	
							•	
TOTALS			163.17	818	766 x 3 2298			

SHEET 8

S. STEM RECEIVER-PROCESSOR

SUB-ASSEMBLY TIMING POB

1 TTPH NAME OR	OTY	TINO	TOTA!	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY * FAIL, RATE
CATEGORY		1500	ros1	NANUFACTURING	ASSEMBLY	PATE	RATE	
2400	7	07.	07.		8			
5404	°	. 74	2.22		24			
. 2408	3	.74	2.22		24			
5478	2	1,30	2.60		16			
54121	3	1.50	4.50		24			
54161	1	2.50	2.50		10			
54163	8	2.50	20.00		BO			
_ \$45271		2,15	2.15		n			
541521	3	09.0	1.80		24			
IN751A	1	0.20	0.20		5			
20546	1	0.58	0.58		9			
2N3B12	-	13.85	13.85		12			
DM75529	2	1.29	2.58		24			
61 10	2	1.75	3.50		20			
SE555	1	2.40	2.40		10			
ME556	- 2	3,73	7.46		20			
CAPACITOR	23	0.13	2.99		138			
RESISTOR	32	0.03	96.0		160			
MIC	3	0.23	0.69		18			
CRISTAL	1	7.00	7.00		35			
SWITCH	-1	2.40	2.40		100			
PC BOARD	. 1	12.00	12.00	818	50			
TOTALB								

SHEET 9 OF 14

SUB-ASSEMBLY TIMING CIRCUIT.

TTPM HAME OR	OTV	TIMU	TOTAL	LAROR HOURS PER 1000 UNITS	1000 UNITS	UNIT	107AL	OTV x FAIL. RATE
CALEGORI		TSOS	180	MANUFACTURING	ASSEMBLY	PATE	RATE	X ONLI COST
CONNECTOR	1	2.00	2.00		30			
HARDWARE	LOT	1.00	1.00		100			
DC TESTING			-		180			
							•	
TOTALS			98.30	818	1129 x 3 (3387)			

SHEET 10 OF 14

SUB-ASSEMBLY PROCESSOR ASSEMBLY-POB No. 1 SYSTEM RECEIVER-PROCESSOR

1	ITEM NAME OR	Æ	TIND	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY * FAIL. RATE
1	THE STATE OF THE S		Tego .	Tear	HANUFACTURING	ASSEMBLY	RATE	FAILURE	x unii cost
4 1.55 6.20	2708	2	10.14	20.28		10			
4 .85 3.10 6 1.80 10.80 7 3.50 24.50 1 3.50 24.50 2 4.85 9.70 1 17.85 17.85 1 17.85 17.80 1 16.45 93.10 1 16.45 16.45 1 1.80 7.80 1 1.60.45 16.45 1 1.60.00 60.00 1 1.95 11 0R 1.03 .90 11 0R 1.1 1.95 11 0R 1.1 1.2.00 2.00 91B 0 1 1.2.00 12.00 12.00 12.00 0 1 1.2.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 </th <th>5416</th> <th>•</th> <th>1.55</th> <th>6.20</th> <th></th> <th>32</th> <th></th> <th></th> <th></th>	5416	•	1.55	6.20		32			
4	5417	2	1.55	3.10		16			
6 1.80 10.80	5421	•	.85	3.40		32			
1 3.50 24.50	5473	9	1.80	10.80		48			
1 1,32 1,32 1,32 1,32 1,35 1,3	5495	7	3.50	24.50		0,2			
1 17.85 17.85 17.85 17.85 17.85 17.85 17.85 17.85 17.80	5415257		3.32	3,32		10			
19 4.90 93.10 19 1 16.45 16.45 1 16.45 16.45 1 7.80 7.80 1 7.80 7.80 20 .40 8.00 30 .03 .90 15 OR (40P) 1 2.00 2.00 D 1 12.00 12.00 818 5 .13 .1.95 6 .1 .1.00 .1.00 7 .2 .2 8 .2 .3 9 .3 .3 1	8085	7	17.85	17.85		20			
19 4.90 93.10 11 16.45 16	8205	2	4.85	9.70		16			
1 16.45 16.45 1 1 7.80 7.80 1 1 .40 .40 (44HZ) 1 60.00 60.00 R 30 .03 .90 OR (40P) 1 2.00 2.00 D 1 12.00 12.00 818 S 301.75 818	8212	19	4.90	93.10		190			
1 7.80 7.80 1 1 40 .40 20 .40 8.00 (44412) 1 60.00 60.00 OR 15 .13 1.95 OR (40P) 1 2.00 2.00 D 1 12.00 12.00 818 S 301.75 818	8257-5		16.45	16.45		20			
1	8355-2	1	7.80	7.80		20			
40412 1 60.00 8.00 1 1 1 1 1 1 1 1 1	2114AL-1	-	.40	.40		20			
R 30 .03 .90 15 OR 15 .13 1.95 15 OR (40P) 1 2.00 2.00 3.00 D 1 12.00 12.00 818 5 C - - - - S - - - - S - - - - S - - - - S - - - - S - - - - S - - - - S - - - - S - - - - S - - - - S - - - - S - - - - S - - - - S -	2N2222A	20	.40	8,00		120			
OR 15 .13 .90 II. OR (40P) 1 2.00 2.00 D 1 12.00 12.00 818	CHYSTAL (4MHZ)	7	60.00	60.00		35			
OR (40P) 1 2.00 2.00 D 1 12.00 12.00 818 5	RESISTOR	30	.03	96.		150			
OR (40P) 1 2.00 2.00 B 1 12.00 818 - - -	CAPACITOR	15	et.	1.95		75			
b 1 12.00 12.00 818 5	COMMECTOR (40P)	1	2.00	2.00		30			
301.75 818	PC BOAND	-	12.00	12.00	818	50			
301.75 818	TESTING	•	•			75			
301.75 818 10									
301.75 818 10									
	TOTALS			301.75	818	1039 x 3 3117			

SHEET 11 OF 14

RECEIVER-PROCESSOR

ITEM NAME OR	οπ	TINO	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY × FAIL. RATE
CATBGORY		. cost	1500	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	X UNIT COST
5402	1	0.70	0.70		0			
5404		0.74	0.74		6			
5407	1	0.65	0.65		8			
5408	4	0.74	2.96		32			
5432	1	1.15	1.15		8			
5478	1	01.1	1.30		89			
5486	1	0.92	0.92		8			
5491A	3	1.54	4.62		24			
54153	80	2.20	17.60		80			
54157	*	2.20	8,80		40			
54166	3	1.80	5.40		30			
54198	11	4.40	48.40		132			
HC8504P	9	8.60	51.60		48			
COMMECTOR	1	2.00	2.00		30			
PC BOARD	1	12.00	12.00	818	20			
TESTING	,	-	,		30			
								·
TOTALS			158.84	818	514 x 3 1632			

SHEET 12 OF 14

SYSTEM RECEIVER-PROCESSOR

SUR-ASSEMBLY PROCESSOR ASSEMBLY-POB No. 3

ITEN NAME OR	210	UNIT	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY × FAIL. RATE
CAIBLORE		TS00	COST	NANUFACTURING	ASSEMBLY	FATE	RATE	1800
5404	1	. 74	.74		8			
5408	2	.74	1.48		16			
5432	1	1,15	1.15		8			
5478	1	1.30	1.30		8			
54161	3	2.50	7.50		8			
541.521	1	09.	. 60		8			
DR75529	2	1.29	2.58		24			
PC BOARD	1	12.00	12.00	818	50			
COMMELTOR	1	2.00	2.00		30			
TESTING	_	_	1		30			
		·						
TOTALS			29.35	818	190 × 3 570			

CHEFT 13 OF

SYSTEM RECEIVER PROCESSOR

SUB-ASSEMBLY CHASSIS

CHASSIS 1 99 STRUTS 7 2 NUT STRIP 7 1 HANDLES 2 2 PC.BD.CON. 7 1 FRONT PANEL 1 8 TOP COVER 1 6 PUSH.BT.SWITCH 1 1 TOGGLE SW. 3 1 TEST PT. 2 EKT.PAN.PC.BD 1 10	2.75 2.75 1.93 2.08 1.26 8.00 6.50 50	95.65	HANUFACTURING	ASSEMBLY	375	FALLORE	1000
7	2.75 2.75 1.93 2.08 1.26 8.00 6.50 .50	95.65			2	3	
7 7 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1	2.75 1.93 2.08 1.26 8.00 6.50 .50	19.25		44			
7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,93 2.08 1.26 8.00 6.50 .50			60			
2 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.08 1.26 8.00 6.50 .50	13.51		10			
7 1 1 1 1 1 2 2 1 1	1.26 8.00 6.50 .50	4.16		10			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.50 .50 1.20	8.82		240			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.50	8.00		22			
H 1 3 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.50	6.50		22			
2 1 3	1.20	. 50		25			
2		3.60		75			
2	.62	.62		15			
-	.50	1.00		30			
	10,00	10.00	вів	50			
CABLING LOT 5	5.00	5.00		2000			
MISC. HDW. LOT 4	4.00	4.00		100			
DIVIDER 2 20	20.00	40.00		90			
TYPE IN COMMECTION 2 5	5.27	10.54		25			
BINC COMMECTOR 1 0	0.78	0.78		25			
MS COMMECTOR 2 16	16.99	33.88		1280		•	
						•	
TUTALS		265.81	818	4083 x 3 (12249)			

SHEET 14 OF 14

SYSTEM RECEIVER - PROCESSOR

SUR-ASSEMBLY ASSEMBLY & TEST

			·					
ITEM NAME OR	ALO OLA	TINO	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	QTY × FAIL. RATE × UNIT COST
CATEGORY			COST	HANUFACTURING	ASSEMBLY	PATE	RATE	
RF Front End,	7				50			
Analog Process	-				25			
Decoder	-				25			
Timing POB	~				25			
Processor Assbly	-				75			
Time of Day PCB	-				25			
Burn In					1000			
Test					5000			
TOTALS .					6225			

APPENDIX B

TRANSMITTER PARTS LISTS AND COST DEVELOPMENT DATA SHEETS

This appendix contains the work sheets used to develop costs of modules employed in the transmitter. These costs were the basis for the calculations presented in Chapter Four of the report.

SHEET 1 OF

SYSTEM RBX - TRANSMITTER

SUB-ASSEMBLY Intermediate Power Amplifier (IPA) Module

ITEM NAME OR	QTV	UNIT	TOTAI.	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY × FAIL. RATE
CALEGORI		TSOS	I S	HANUFACTURITIG	ASSEMBLY	PATE	RATE	Teo x
MODULATOR	1	447.93	447.93	2454	1344			
OSCILLATOR	1	49.28	49.28	2454	948			
150W AMP	2	117.84	235.68	4908	2136			
1:2 DIVIDER	2	21.41	42.82	4908	3330			
CHASSIS	-	263.45	263.45	•	5775			
ASSEMBLY & TEST	1	-		-	1300			
				!				
							•	
	•							
TOTALS			1039.16	14724	14833			

SYSTEM IPA MODULE SUB-ASSEMBLY MODULator

OF 18

SHEET 2

I TEH NAME OR CATEGORY	77	UNIT	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY x FAIL. RATE
				MANUFACTURING	ASSEMBLY	FATLURE	FATLURE	x UNIT COST
5404	1	.74	.74					
5478	2	1.30	2.60		16			
54121	4	1.50	6.00		13			
IN 914	4	.12	.48		20			
2N 918	2	2.10	4.20		01			
RCA 3019	1	. 78	. 78		35			
NP33144A	2	207.00	414.00		30			
RESISTOR	24	.03	.72		220			
RESIST. VAR	2	.42	.84		32			
CAPAC. DISC	17		2.21		2 2			
ωr.	3	.12	.36					
CHESTAL	1	7.00	7.00		35			
SUBSTRATE	4	8.00	8.00	2454	25			
	1							
TOTALS			447.93	2454	448 x 3 1344			

Slieet 3

SYSTEM IPA MODULE

OF 18

SUB-ASSEMBLY Oscillator

TTEM NAME OR	È	UNIT	TOTAL.	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	T07AL	OTY × FAIL, RATE
CATEGORY		cost	COST	MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
2N5861	1	1.20	1.20		9			
SD1522	2	13.10	26. 20		100			
MPN 13401	1	88`	.88		15			
RESISTOR	7	.03	. 21		35			
CAPACITOR	ก	.13	1.69		45			
CAPACITOR FT	~	.23	69		3.5			
CAPACITOP IN	-	<u>\$</u> .	18.					
TUNING TUBE	_1	10,00	10.00		9			
SUBSTRATE	1	8.00	8.00	2454	25			
TOTALS			49.28	2454	316 x 3 948			

SHEET 4 OF 18

SVSTEM IPA MODULE
SUB-ASSEMBLY 150 MALE AMBLIFIAE

OTY × FAIL. RATE × UNIT COST TOTAL FALLURE RATE UNIT FAILURE PATE LABOR HOURS PER 1000 UNITS ASSEMBLY 356 x 3 1068 S 녉 2 4 8 의 2 8 4 HANUFACTURING 2454 2454 TITAL. 18.40 14.80 28.00 34.60 . 18 2.08 2.52 9.26 8.00 117.84 18.40 14.80 28.00 34.60 .03 UNIT .13 .42 4.63 800 ξ 16 ٥ 9 ITEM NAME OR CATEGORY CAPACITOR SUBSTRATE RESISTOR SD 1536 SD 1538 MA 47021 SD 1526 TOTALS TACAPS ØII.

;

SHEET 5 OF 1

SYSTEM IPA MODULE
SUB-ASSEMBLY 1:2 DIVIDER

ITEM NAME OR	OTV	UNIT	TOTAL.	LAROR HOURS PER 1000 UNITS	1000 UNITS	TINI	107AL	OTY × FAIL, RATE
CATEGORI		180 0	TSC	MANUFACTURING	ASSEMBLY	PATE	FAILURE	× ONLY COST
BALUN	2	. 32	.64		500			
RESISTOR	1	.77			.5			
SUBSTRATE .	1	20.00	20.00	2454	50			
								,
			•					
•							•	
TOTALS			21.41	2454	555 x 3 (1665)			

SYSTEM IPA MODULE

SUB-ASSEMBLY Casting & Enclosure (Chassis)

20 2000	The state of the s		1	LABOR BOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY * FAIL. RATE
CATEGORY	<u> </u>	TS00	COST			FATLURE	FALLURE	x UNIT COST
		\		HANUFACTURING	ASSEMBLY	PATE	RATE	
CASTING	1	78.00	78.00		100			
ENCLOSURE	-	24.95	24.95		150			
PRONT PANEL .	1	2.50	2.50		100			
a Managa	-	3.00	3.00		25			
COMMECTION	-	00 05	150.00		1500			
MISC. HDM.	5	-	5.00		50			
	-							
TOFALS			263.45		1925 x 3 5775			

EET 7 OF 18

SYSTEM IPA MODULE

SUB-ASSEMBLY ASS'Y & TEST

ITEM NAME OR	È	UNIT	TOTAL.	LABOR HOURS PER 1000 UNITS	1000 UHITS	UNIT	TOTAL	OTY × FAIL. RATE × UNIT COST
		 B	1	NANUFACTURING	ASSEMBLY	PATE	RATE	
OSCILLATOR	1				50			
MODULATOR	1				50			
150W. AMP	2				100			
1:2 DIVIDER	2				100			
FUNCT. TEST					500			
BUEN-IN			,		500			
							٠	
TOTALS					1300			

SHEET 8 OF 18

SYSTEM NOX TRANSMITTER

SUB-ASSEMBLY 1150 WATT AMPLIFIER HODGLE

TEN NAME OR	OT.	TIM	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY * PAIL. RATE
CATEGORY		200	COST	MANUFACTURING	ASSEMBLY	PATE	RATE	1000
420 W amp. Nod.	3	212.51	637.53	7362	12105			
1:3 Divider	1	49.71	49.71	2454	3660			
3:1 Combiner .	1	49.71	49.71	2454	3660			
Power Supply	1	17.65	17.65	818	702			
Chassis	1	271.45	271.45		2050			
Aspembly & Test	1	•	-		1350			
Circulator	1	20, 20	70.70		t			
							•	
TOTALS			1096.05	13088	23527			
	-	-	•	-		•		

SHEFF 9 OF 18

SYSTEM 1150 WAT'T AMPLIFIER MODULE

SUB-ASSIDERLY 420 WATT AMPLIETER MODULE.

ITEM NAME OR	OTV.	TINO	TYTAI,	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	107AL	OTY × FAIL. RATE
CATEGORY		1500	C()ST	HANUFACTURING	ASSEMBLY	PATE	RATE	1800 THIS X
\$510S	1	28.00	28.00		50			
SD1538	4	34.60	138.40		200			
RESISTOR TF	9		4.62		30			
RESITOR W.WD	2	1.05	2.10		40			
BALUN	2	.32	.64		500			
COMMECTOR SMA	5	2.65	13.25		450			
SUBSTRATE	1	25.00	25.00	2454	50			
MTSC. HIM	101	.50	05.		25			
TUTALS			212.51	2454	1345 x 3 4035			

SHEET 10 OF 18

SYSTEM 1150 WATT AMPLIFIER HODULE SUB-ASSEMBLY 3:1 DIVIDER / COMBINER

ITEM NAME OR	OTV	TIM	TOTAL.	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY × FAIL. RATE
CATEGORY		COST	mer.	HANUFACTURIES	ASSEMBLY	PATE	FALLURE	x own cost
BALUN	3	.32	96.		750			
RESIST. N.WD.	3	1.05	3.15		90			
CONNECTOR .	4	2,65	10.60		360			
SUBSTRATE	1	35.00	35.00	2454	50			
							•	
TUTALS	_		49.71	2454	1220 × 3 3600			

SHEET 11 OF

SYSTEM 1150 WATT AMPLIFIER

STB-ACCIDENTY

- 20	PONER SUPPLY							
TEN NAME OR	orv	7182	TOTAL.	LABOR HOURS PER 1000 UNITS	1000 UNITS	TIND	TOTAL	OTY × FAIL. RATE
CATEGORY		1900	TSOS	NANUFACTURING	ASSEMBLY	PATE	RATE	
NJE 1100	1	1.53	1.53		8			
1N4751	1	.45	.45		5			
TRANSIST. SI	1	. 15	.15		9			
9PC 1C#OB	4	.03	.12		20			
CAP		1.69	5.07		30			
CAP DISC		.13	. 39		15			
COIL	2	.12	.24		10			
PC. BOARD	-	7.00	7.00	918	50			
COMMECTOR	-	2.65	2.65		90			
							٠	
	_							
	-							
TOTALS			17.65	818	234 x 3 702			

SYSTEM 1150 WATT AUPLIFIER HODULE

SHEET 12 OF 18

SUB-ASSEMBLY CASTING & ENCLOSURE (CHASSIS)

ITEM NAME OR	QTY	TIMI	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTV × FAIL, RATE × IMIT COST
CATEGORY		COST	181	HANUFACTURITIES	ASSEMBLY	PATE	RATE	
CASTING	1	78.00	78.00		100			
COVER	1	5.00	5.00		25			
ENCLOSURE .	1	24.95	24.95		150			
FROST PANEL	-	2.50	2.50		100			
HANDLE	1	3.00	3.00		25			
COMMECTOR	1	150.00	150.00		1500			
MISC. HDM.	101	٩.00	8.00		150			
	_	_						
							-	
TOTALE			271.45		2050			

SYSTEM 1150 WATT AMPLIFIER HODILE

SUB-ASSEMBLY ASSEMBLY & TPST

05 18

SHEET 13

CATEGORY	44	UNIT	TOTAL.	IABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY × FAIL. RATE
		}		MANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
POWER SUPPLY	1				000			
1:3 DIVIDER	1				50			
3:1 COMBINER	1							
420 W AMP. MOD.	1				ne .			
CIRCULATOR	-				150			
BURN-IN					000			
FUNCT TEST					500			
							;	
:								
							•	
1	1							
TUTAIR					1350			

SYSTEM RBX TRANSMITTER

OF 18

SHEET 14

SUB-ASSEMBLY 4:1 COMBINER MODULE

ITEM NAME OR) TQ	TIMO	TOTAL.	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY × FAIL. RATE
CATEGORY		1800 1	!	HANUFACTURING	ASSEMBLY	FATLURE	PATE	A UNIT COST
COMBINER	1	24.23	24.23	2454	4695			
CHASSIS	1	263.45	263.45		5775			
ASSEMBLY & TEST	_		1		75			
}								
							•	
	_							
							•	
TOTALS			287.68	2454	10545			

SHEET 15 OF 18

SYSTEM 4:1 COMBINER MODULE.
SUB-ASSEMBLY COMBINER NETWORK

;						-		
ITEM NAME OR	QTY	TIMO	TOTAL.	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	107AL	OTY × FAIL. RATE
CATEGORY		TSOO	T.GO.T	PIANUFACTURIES	ASSEMBLY	I'ATE.	RATE	
BALUN	9	.32	1.92		1500			
RESISTOR TF	3		2.31		15			
SUBSTRATE	-	20.00	20.00	2454	50			
				:				
				:				
		_						
		_						
TYTALS			24.23	2454	1565 x 3 4695			

SHEET 16 OF 18 SUB-ASSEMBLY CASTING & ENCLOSURE (CHASSIS) SYSTEM 4:1 COMBINER MODULE

ITEM NAME OR CATECTORY	QTY	UNIT	TOTAL.	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY * FAIL. RATE
				HANUFACTURING	ASSEMBLY	PATE	FAILURE	x UNIT COST
CASTING	7	78.00	78.00		100			
ENCLOSURE	-	24.95	24.95		051			
FRONT PANEL .	-	2,50	2.50		100			
HANDLE	4	3.00	3.00		25			
COMMECTOR	7	150.00	150.00		1500			
MISC. HDW.	LOT	5.00	5.00		50			
	,				2			
aprints.			263.45		1925 x 3 5775			

ō.

SHEET 17

SYSTEM ROX TRANSMITTER

SUB-ASSEMBLY FRANE

OTY × FAIL, RATE × UNIT COST TOTAL FAILURE RATE UNIT FAILURE PATE LABOR HOURS PER 1000 UNITS ASSEMBLY 11200 9000 2000 150 MANUFACTURING TOTAL 27.54 900.00 3.00 5.00 935.54 UNIT 150.00 3,00 27.54 Ŋ 4 9 ITEM NAME OR CONNECTOR CABLING PRAME HANDLE

SYSTEM NBX - TRANSMITTER

9

SHEET 18

SUB-ASSEMBLY ASS'Y & TEST

ITEM NAME OR	077	UNIT	TYTAL.	LABOR HOURS PER 1000 UNITS	1000 UNITS	דואט	TOTAL	OTY × FAIL. RATE
CALEGORI		COST	CUST	HANUFACTURING	ASSEMBLY	PATE	RATE	lego IIIo v
IPA MODULE	1				50			
1.15KW MODULE	4				200			
4:1 COMBINER	1	•			50			
FUNCT, TEST		_			500			
BURN IN					500			
TOTALS					1300			

APPENDIX C

PERFORMANCE MONITOR/MODEM PARTS LISTS AND COST DEVELOPMENT DATA SHEETS

This appendix contains the work sheets used to develop costs of modules employed in the performance monitor/modem. These costs were the basis for the calculations presented in Chapter Four of the report.

SYSTEM PERFORMANCE HONITOR

SUB-ASSEMBLY PCB No. 1

CATEGORI	_							TOTAL STATE
		T SBD .	rsos	MANUFACTURING	ASSEMBLY	PATE	RATE	A UNIT CUE!
5400	-	0.70	2.10		24			
5404	1	0.74	0.74		8			
5408	2	0.74	1.28		16			
54121	-	95-1	1.50		В			
54163	2	2.50	2,00		16			
54195	1	1.30	1.30		8			
545271	1	2.15	2.15		8			
541,532	1	0.74	0.74		В			
IN914	1	0.12	0.12		5			
IN4154	1	0.13	0.13		5			
IN705A7	1	2.10	2.10		5			
2N915	9	0.43	2.58		36			
ZN4360	2	0.32	0.64		12			
19741	2	0.27	0.54		16			
SE527	7	0.52	3.64		56			
NESS6	2	3.75	7.50		16			
LH0032	1	24.50	24.50		8			
67 10	5	1.75	8.75		40			
RESISTOR	80	0.03	1.50		250			
VAR RESISTOR	6	0.42	3,78		90			
CAPACITOR	•	0.13	0.52		20			
SUBSTRATE		48.00	48.00	2454	50			
TOTALS	(contd	_=						

C-3

SYSTEM PREFORMANCE HONITOR

SUB-ASSEMBLY PCB No. 1 (contd.)

			1					
ITEM NAME OR	OTV.	UNIT	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY * FAIL. RATE
THE POOR		.		MANUFACTURING	ASSEMBLY	FATE	RATE	I GOOD II I
COMMECTOR	1	2.00	2.00		30			
TESTING	-	•	•		25			
		•						
•								
		٠						
٠								
TOTALS			121.11	2454	760 × 3 2280			

SHEET 3 O

TIEN PERFORMANCE MONITOR

SUB-ASSEMBLY PCB No. 2

SUB-ASSEMBLY FOR	PUB NO. 4		1					
ITEM NAME OR	סנג	TIM	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	TIND	TOTAL	OTY × FAIL. RATE
CATEGORY		. 0067	T803	PANUFACTURING	ASSEMBLY	RATE	RATE	
5432	1	1.15	1.15		8			
11914	17	0.12	2.04		85			
IN4148 .	2	0,13	0.26		10			
2N915	8	0.43	3.44		48			
ZH2222A	-	0,40	0.40		9			
SES27	1	0.52	0.52		8			
CNPS	3	0.13	0.39		15			
RESISTORS	21	0.03	0.63		305			
VAR. RESIST	1	0.42	0.42		10			
5200F1	9	06.0	5.40		48			
5200F5	1	06.0	06.0		æ			
5200F7	-	0.90	06.0		8			
SUBSTRATE	7	48.00	48.00	2454	50			
COMMECTOR	-	2.00	2.00		30			
MISC HARDWARE	\$53	1.50	1.50		45			
TESTING					25			
	-							
	-							
	-							
TOTALG			67.95	2454	509 x 3 1527			
	-	•			•			-

The Mex - House

SUB-ASSIDIBLY

LITER NAME OR CATEGORY	Ē	UNIT	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY x FAIL. RATE
ACRES CANADA				MANUFACTURING	AZBKZSSV	FAILURE	FALLURE	x UNIT COST
LSI 48/V.27	-	3500.00	3500.00		150			
DOLL INTERFACE.	-	800.00	800.00		950			
								,
TOTALS			4300.00		200			
		•	-	_		_		-

SYSTEM MBX - MONITOR-HODEM

SHEET 5

SUB-ASSEMBLY CHASSIS

CATEGORY	Ē	TIMO	TOTAL.	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY × FAIL. RATE
			3	NAMUFACTURING	ASSEMBLY	RATE	RATE	X UNIT CAST
CHASSIS	1	95.65	95.65		44			
STRUTS	3	2.75	8.25		09			
NUT STRIP	3	1.93	5,79		15			
HANDLES	2	2.08	4.16		15			
PC. BD. CONN.	3	1.26	3.78		06			
PROJET PANEL	1	9.00	8.00		22			
TOP COVER	1	6.50	6.50		22			
PUGH BT. SW.	1	.50	.50		25			
TOGGLE SW.	3	1.20	3.60		75			
LANG	T	-62	-62		15			
TEST POINTS	9	.50	3.00		06			
FR. PANEL PC. BD	-	1.00	1.00	8**	50			
CABLING	LOT	5,00	5.00		100			
MISC. HDW.	LOT	4.00	4.00		100			
NS CONNECT.	2	16.99	33.98		1280			
WIRING	101	2.00	2.00		200			
							•	
TOTALS	! 		185.83	818	2203 x 3 6609			

SHEET 6 SYSTEM TOX - MONITOR-MODER SUN-MSEDIBLY ASS'Y & TEST

6

ITEN NAME OR	Æ	TIMO	TOTAL	LABOR HOURS PER 1000 UNITS	1000 UNITS	UNIT	TOTAL	OTY × FAIL. RATE
CATEGORI		COST		HANUFACTURING	ASSEMBLY	FAILURE	RATE	A CHILL CLOST
HORITOR	1				95			
насы	1				50			
CHASSIS .	1				250			
TEST					1000			
· BURN IN					500			
•								
							-	
TOTALS					1850			

APPENDIX D

CHASSIS PARTS LISTS AND COST DEVELOPMENT DATA SHEETS

This appendix contains the work sheets used to develop costs of modules employed in the chassis. These costs were the basis for the calculations presented in Chapter Four of the report.

SHEET 1 OF 2

SYSTEM FEX - CHASSIS

SUB-ASSEMBLY

CATEGORY	Ē	COST	TOTAL.	LABOR HOURS PER 1000 UNITS	1000 UNITS	דואט	TOTAL	OTY × FAIL. RATE
				HANUFACTURING	ASSEMBLY	FAILURE	FAILURE	x UNIT COST
VERT. CABINET,	1	263.00	263.00		-			
BLOWER ASSY.	1	137.00	137.00					
VERT GRILL	1	19,00	19.00					
SLIDES	2PR.	15.00	15.00		1000			
CABLE TROUGH	4	21.00	21.00					
CABLE RETRACT.	2	16.00	32.00		,			
POWER STRIP	1	33.00	33.00					
DIVIDER PANEL	•	11.00	44,00		-			
CIRCULATOR	-	270.00	270.00		000			
ANTERN CONN.	-	55.00	55,00		100			
WECO BLOCK	7	3.50	3.50		36			
2-WAY RECEPT.	٦	7.50	7.50		100			
35J12 CABLE	20 FT.	.30/ft	6.00		80			
MS COMMECTOR	-	16.99	67.96		2560			
WIRING		•	-		2000			
	İ							
	1						ļ	
TOTALS			988.96		6035 x 3 18105			
				•			-	

APPENDIX E

MICROPROCESSOR SYSTEM INTERFACE SCHEMATIC

